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Abstract The partial sterility of hybrids has been a major
barrier for utilization of the strong heterosis expressed in
hybrids between Oryza sativa ssp. indica and O. sativa
ssp. japonica. Wide-compatibility varieties, comprising a
special class of germplasm, are able to produce fertile
hybrids when crossed to both indica and japonica vari-
eties. However, all the work on wide compatibility and
majority of studies on indica/japonica hybrid sterility
reported so far were based only on spikelet fertility; thus,
it is not known to what extent male and female gamete
abortions influence hybrid sterility. In this study, we
investigated pollen fertility, embryo sac fertility, and
spikelet fertility in an F; population of 202 true hybrid
plants derived from a three-way cross (‘02428’/*Nanjing
11°//‘Balilla’). A partial regression analysis showed that
the pollen and embryo sac fertility contributed almost
equally to spikelet fertility. QTL analysis based on a
linkage map of 191 polymorphic marker loci identified
two QTLs for pollen fertility, one QTL for embryo sac
fertility, and three QTLs for spikelet fertility. The S5
locus, previously identified as a locus for wide compat-
ibility by spikelet fertility analysis, is a major locus for
embryo sac fertility, and a QTL on chromosome 5 had a
major effect on pollen fertility. These two loci coincided
with the two major QTLs for spikelet fertility. The study
also detected a QTL on chromosome 8§, showing a large
effect on spikelet fertility but no effect on either pollen or
embryo sac fertility. Very little interaction among the
QTLs was detected. The implications of the findings in
rice breeding programs are discussed.
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Introduction

The Asian cultivated rice (Oryza sativa L.) can be clas-
sified into two main subspecies, indica and japonica.
Although hybrids developed by crossing varieties within
the same subspecies have achieved great success and
contributed considerably to rice yield increase in recent
years, the utilization of strong heterosis in the F;s be-
tween the two subspecies has been difficult. One of the
main difficulties is the partial sterility that frequently
occurs in the Fys of such hybrids (Kato et al. 1928).

The genetic basis of the intersubspecific hybrid ste-
rility has been extensively investigated in the last several
decades. Based on the analysis of near isogenic lines, Oka
(1974) proposed a ‘“‘duplicated lethal” model that in-
volved s alleles at two genetically duplicated loci to ex-
plain the genetic basis of hybrid sterility. The finding of
wide-compatibility varieties, comprising a special class of
rice germplasm able to produce fertile hybrids when
crossed to both indica and japonica varieties (Ikehashi
and Araki 1984, 1986), brought hope for overcoming the
reproductive barrier between the two subspecies and has
attracted considerable research interests in the rice
community. Recent studies, making use of molecular
marker technology and high-density molecular marker
linkage maps, not only confirmed the presence of such a
locus for wide compatibility as reported by Ikehashi and
Araki (1986), but also determined the precise location of
the locus in the rice genome (Liu et al. 1992, 1997; Zheng
1992; Yanagihura et al. 1995). Moreover, a series of
additional loci were also identified as causing hybrid
sterility in indica/japonica crosses (Ikehashi and Wan
1996; Wang et al. 1998).

However, it should be mentioned that all the work on
wide compatibility and majority of studies on indica/
Japonica hybrid sterility reported so far have been based
only on spikelet fertility, which is directly a function of
male gamete fertility, female gamete fertility, and affinity
between the uniting male and female gametes. Cyto-
logical investigation of the intersubspecific sterility
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revealed both male gamete abortions (Wang et al. 1991,
1992; He et al. 1994; Teng et al. 1996; Zhu et al. 1996)
and female gamete abortions (Yokoo 1984; Li 1988;
Ling et al. 1991; Li and Ouyang 1992; Liu et al. 1993,
1997; Zhu et al. 1998), as well as reduced dehiscence of
the anthers (Macka et al. 1991; Liu et al. 1993). How-
ever, it is not known how these cytological abnormalities
are genetically controlled or to what extent they influ-
ence hybrid sterility.

In the study reported in this paper, we assayed pollen
fertility, embryo sac fertility, and spikelet fertility of an
F, population derived from a three-way cross that was
previously used for mapping and identification of the
wide-compatibility gene as well as QTLs for hybrid
sterility (Liu et al. 1997). The analyses determined
unambiguously the genetic bases of the pollen fertility
and embryo sac fertility in relation to spikelet fertility.

Materials and methods
Experimental plant population

A three-way cross population, ‘02428’/*Nanjing 11°//
‘Balilla’, was constructed for this study. ‘02428 is a
Jjaponica variety with high wide compatibility (Liu et al.
1992, 1996), ‘Nanjing 11’ is an indica variety developed
by the Agriculture Academy of Jiangsu Province, China,
and ‘Balilla’ is a japonica variety from Italy. ‘Nanjing 11°
and ‘Balilla’ are regarded as typical indica and japonica
varieties, respectively, that have been widely used as
testers for indica—japonica compatibility analyses in rice
breeding programs in China (Gu et al. 1993).

In conducting this study, a cross was made between
‘02428’ and ‘Nanjing 11”7 in the summer rice-growing
season of 2001 in Wuhan, China, and the F, was crossed
with ‘Balilla’ in the winter season of 2001/2002 in Ha-
inan Island, China. The resulting F; plants were planted
in the 2002 rice-growing season in the experimental farm
of Huazhong Agriculture University, Wuhan. A popu-
lation of 202 F; plants from the three-way cross was
obtained for the study. At tillering stage, each plant was
divided into three parts by peeling off the tillers and
replanting, and each part was allowed to grow to
maturity. One part of each plant was used for DNA
extraction, the second part for embryo sac and pollen
collection, and the third part for examining spikelet
fertility. Spikelet fertility was scored as the seed-setting
rate of three panicles randomly collected from each
plant, and embryo sac and pollen fertility were examined
using the methods described below.

Embryo sac and pollen-fertility evaluation

The whole-stain clearing method (Yang 1986) was used
forevaluating embryo sac fertility. About 100—150 mature
spikelets from various parts of different panicles of a plant
were randomly collected and immediately immersed in a

fixative [methanol:acetic acid (3:1)]. The sample was then
placed in a vacuum for 30 min and incubated for 24 h at
room temperature, after which the tissue was stored in
70% methanol at 4°C. Before staining, the samples were
transferred to 70% ethanol, with the lemma and palea
removed to expose the ovary to ethanol. The tissue was
then processed through an ethanol series (50, 30, and
15%) and finally transferred into distilled water. The
whole mature ovary was stained in Ehrlich’s haemat-
oxylin (Wang 1992) for 20-40 min and washed with dis-
tilled water for 24 h, followed by washing with tap water
three to four times until the color of tissue turned from
purple to blue. The tissue was dehydrated by passing it
through an ethanol series and cleared by incubation in
100% methyl salicylate three times—more than 1 h for
the first and the second incubation, and at least 24 h for
the third incubation. Fertility of the embryo sacs was
examined under a microscope. About 100 embryo sacs
were examined for each plant.

About five to eight mature flowers from various parts
of different panicles of a plant were collected for pollen-
fertility investigation. Pollen from different spikelets
were mixed, stained with I,—KI solution, and observed
under a microscope. A total of 300-800 pollens per plant
were analyzed.

DNA marker assay

Total cellular DNA was extracted using essentially the
protocol of Murray and Thompson (1980). A total of
191 nuclear microsatellite (SSR) and cleaved amplified
polymorphic sequence (CAPS) (Konieczny and Ausubel
1993) markers were used for map construction. The
primer pairs of the RM series and MRG series were
designed according to Temnykh et al. (2000, 2001) and
McCouch et al. (2002), respectively. Another two primer
pairs, H3878-1, H4698-1, were derived from the pub-
lished sequence (http://ncbi.nlm.nih.gov). Two CAPS
markers, Cl11 and RG213, were converted from the
RFLP markers on the basis of the sequence information.

Polymerase chain reaction (PCR) was performed in a
20-pl reaction volume containing 30-50 ng of the tem-
plate DNA, 10 mM Tris-HCI, 50 mM KCI, 0.1% Triton
X-100, 1.8 mM MgCl,, 0.1 mM dNTP, 0.2 uM primer
pairs, and 1 U Tag DNA polymerase. DNA amplifica-
tion protocol included an initial 3 min at 94°C, followed
by 35 cycles of 1 min at 94°C, 1 min at 55°C, 1.5 min at
72°C, and a final extension for 5 min at 72°C in a
thermocycler (MJ Research, USA). PCR products were
separated on 6% polyacrylamide denaturing gels, and
the amplified DNA fragments were silver-stained as
described by Bassam et al. (1991).

Data processing and statistical analysis

As described previously by Liu et al. (1997), only the
markers polymorphic between ‘02428 and ‘Nanjing 11’



Fig. 1 (A) Fertile embryo sac with visible antipodal cell («) and
polar nucleus (p). (B) Sterile embryo sac with degenerated cells (d)

were informative for such analysis. Thus, data for
markers polymorphic between ‘02428’ and ‘Nanjing 11’
were scored and analyzed using the method for back-
cross populations in map construction and QTL analy-
sis.

An SSR marker linkage map was constructed using
MAPMAKER/EXP, version 3.0, at a LOD score of 3.0
(Lincoln et al. 1992). QTLs governing pollen fertility,
embryo sac fertility, and spikelet fertility were resolved
by composed interval mapping, using QTL Cartogra-
pher, version 1.15 (Basten et al. 2001). Analysis of var-
iance (ANOVA) using marker genotypes as the classes
was conducted using the statistical package STATIS-
TICA (StatSoft 1995).
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Results

Segregation of embryo sac fertility, pollen fertility,
and spikelet fertility

A normal mature rice embryo sac has antipodal cells,
two polar nuclei, two synergid nuclei, and an egg nu-
cleus. Although the synergids and egg nucleus are
sometimes not clearly visible by the whole-stain clearing
method, normal embryo sacs can easily be distinguished
from abortive embryo sacs (Fig. 1). Ovaries with normal
embryo sac structure (visible antipodal cells and polar
nucleus) were regarded as fertile, whereas those showing
degenerated cells were classified as sterile. Embryo sac
fertility in the three-way cross population varied from a
low of 20% to a high of 100%, and showed an apparent
bimodal distribution (Fig. 2).

Pollen grains that were round and darkly stained
were regarded as fertile, and all others were classified as
sterile. Pollen fertility also varied widely in the popula-
tion from 0% to almost 100%, with apparently contin-
uous distribution (Fig. 2), as did spikelet fertility.

Simple correlations were calculated pairwise to assess
the relationship of embryo sac fertility, pollen fertility,
and spikelet fertility. It was shown that spikelet fertility
is highly significant and about equally correlated with
embryo sac fertility (0.620) and pollen fertility (0.624).
There is also a weak correlation between embryo sac
fertility and pollen fertility (0.311, significant at P < 0.01
level).

A multiple regression analysis was also conducted
using spikelet fertility as the dependent variable and the
other two traits as independent variables (Table 1). The
results again showed that spikelet fertility is highly and
about equally dependent on embryo sac fertility and
pollen fertility, as indicated by both partial correlation
coefficients and the determination coefficients.

The linkage map

Based on 202 true hybrid plants, a linkage map con-
sisting of 191 loci was constructed using MAPMAKER/
EXP at LOD 3.0 (map not shown). The total length of
this map was 1,761.4 cM, with an average interval of
9.2 ¢cM between adjacent markers. The 191 loci were
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Table 1 Multiple linear

regression analysis of spikelet Variable Partial SE Partial Determination
fertility as dependent variable regression correlgtlon coefficient
and pollen fertility and embryo coefficient coefficient
sac fertility as independent
variables Intercept —21.663 4.476

Pollen fertility 0.444 0.045 0.579 0.335

Embryo sac fertility 0.619 0.062 0.585 0.342

placed into 12 linkage groups at LOD 3.0, and these
markers had a good coverage of all 12 chromosomes
according to the published map (Temnykh et al. 2000,
2001). The linear order of makers in this map accorded
well with that of Temnykh et al. (2000, 2001).

QTLs for embryo sac fertility, pollen fertility,
and spikelet fertility

The genomic locations of the QTLs resolved using QTL
Cartographer (Basten et al. 2001) for the three traits
with LOD threshold 2.5 are illustrated in Fig 3.

Two QTLs were detected for pollen fertility. The
QTL detected on chromosome 5, pf5, demonstrated a
large effect on pollen fertility, and the effect of the other
QTL on chromosome 12, pfi2, was also substantial
(Table 2). QTL pf5 coincided with the f5 locus for
spikelet fertility identified previously by Wang et al.
(1998) in a different three-way cross population (‘Balil-
la’/Dular//Nanjing 11°). In addition, pfI2 corresponded
well with a QTL for spikelet fertility detected by Liu
et al. (1997).

Only one QTL (ef6) with major effect was resolved
for embryo sac fertility (Table 2). The genomic location

of this QTL corresponded well with the S5 locus for
wide compatibility identified previously by spikelet fer-
tility (Liu et al. 1992, 1997).

Three QTLs were identified as showing significant
effects on spikelet fertility (Table 2). The one on chro-
mosome 5, spf5, appeared to have much larger effect
than the other two on chromosomes 6 and 8, spf6 and
spf8, respectively. The locations of spf5 and spf6 corre-
sponded well with the QTLs for pollen fertility and
embryo sac fertility, respectively (Fig 4). In addition,
spf8 had a similar location with f§ for spikelet fertility
identified previously by Wang et al. (1998).

Possible interactions between QTLs for each trait

As described above, two and three QTLs were detected
for pollen fertility and spikelet fertility, respectively. To
assess possible effects of interactions between loci on
these two traits, ANOVAs were performed using the
genotypes of the most closely linked markers as groups.
The results of two-way ANOVA for pollen fertility
indicated that the two loci did not have significant
interaction effect on the trait (data not shown). A three-
way ANOVA of spikelet fertility also indicated that
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Table 2 QTLs controlling

pollen fertility, embryo sac Trait Interval QTL LOD Effect Variance (%)
fertility and spikelet fertility in

the ‘02428’/*'Nanjing 11°// Pollen fertility MRG1010-RM13 pf5 10.10 26.48 21.69
‘Balilla’ population detected at - RM19-RM247 pfi2 5.52 20.78 12.50

LOD 2.5, with composite Embryo sac fertility CI1-RM276 Ef6 30.87 29.83 52.20
interval mapping, using QTL Spikelet fertility RM13-RM405 spf5 11.96 26.75 25.22
Cartographer, version 1.15 RG213-RM557 spf6 5.14 17.64 11.01

H4698-1-H3878-1 spf8 4.01 15.66 8.69

there is very little interaction between paired loci or
among the three loci, except one interaction of small
effect (F=4.81, P=0.03) between RG213 (spf5) and
H3878-1 (spf8). These results indicated that, essentially,
these loci acted independently in determining pollen
fertility and spikelet fertility.

Effects and modes of gene actions at the QTLs

There were two genotypes at each of the loci in this
three-way cross: a genotype composed of a ‘Nanjing 11’
allele (i) and ‘Balilla’ allele (j) and a genotype composed
of a ‘02428’ allele (n) and a ‘Balilla’ allele (j). The mode
of gene action was the same at all the six QTLs identified
for the three traits (Tables 2, 3, 4, 5, 6). The n/j genotype
was significantly more fertile than the i/j genotype at all
loci, indicating that indica/japonica heterozygote re-
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Fig. 4 (A) LOD curves of QTLs for pollen fertility and spikelet
fertility on chromosome 5. (B) LOD curves of QTLs for embryo sac
fertility and spikelet fertility on chromosome 6

duced both embryo sac fertility and pollen fertility,
which consequently caused reduced spikelet fertility.
Conversely, the n/j genotype is favorable for embryo sac
fertility, pollen fertility, and spikelet fertility.

Discussion

Wide compatibility that overcomes hybrid sterility in
intersubspecific crosses in rice has been traditionally
analyzed using spikelet fertility as the criterion (Ikehashi
and Araki 1986; Gu et al. 1993), by which a number of
loci or QTLs for wide compatibility as well as inter-
subspecific sterility has been identified (Ikehashi and

Table 3 Spikelet fertility for each of the three-locus combinations,
based on the genotypes of the most closely linked marker loci

RM13 (spf5) RG213 (spf6) H3878-1 (spf8) Spikelet fertility (%)

12 1 1 16.20
1 1 0° 37.30
1 0 1 30.50
1 0 0 41.24
0 1 1 33.77
0 1 0 50.86
0 0 1 60.59
0 0 0 73.55

“Genotype 1 of each locus was composed of an allele from ‘Nanjing
11’ and an allele from ‘Balilla’

®Genotype 0 of each locus was composed of an allele from ‘02428’
and an allele from ‘Balilla’

Table 4 Pollen fertility for each of the two-locus combinations,
based on the genotypes of the most closely linked marker loci

RM13 (pf3) RM19 (pfi2) Pollen fertility (%)
12 1 22.90
1 0° 45.89
0 1 49.63
0 0 62.99

% PGenotype designations are the same as in Table 3

Table 5 Embryo sac fertility for each genotype of the ef6 locus

RM276 (ef6) Embryo sac fertility (%)

12 57.69
0o° 87.36

& bGenotype designations are the same as in Table 3
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Table 6 Pollen fertility, embryo

Pollen
fertility (%)

Embryo sac
fertility (%)

Spikelet
fertility (%)

sac fertility and spikelet fertility RM13 ) RM276 )
for each combination of the two (/3. spf5) (ef6, spf6)
major QTLs, based on the )

genotypes of the most closely 1; 1

linked marker loci (1) (1)

& ®Genotype designations are 0 0

the same as in Table 3

29.05 55.76 25.42
54.58 59.74 42.93
30.36 80.65 35.75
52.29 94.15 67.13

Wan 1996; Liu et al 1997; Zhang et al. 1997; Wang et al.
1998). In general, spikelet fertility is equally critically
dependent on both male and female gamete fertility. It
has been reported that both male and female gamete
abortions occur in indica/japonica hybrids that greatly
reduce the fertility of the hybrids (Yokoo 1984; Li 1988S;
Ling et al. 1991; Wang et al. 1991, 1992; Li and Ouyang
1992; Liu et al. 1993, 1997, 2004; He et al. 1994; Teng
et al. 1996; Zhu et al. 1998).

In this study, we quantified the importance of male and
female gamete abortions in determining indica/japonica
hybrid sterility, and found that male and female gamete
abortions contributed almost equally to the intersub-
specific hybrid sterility. Genetic dissection identified two
major loci (QTLs) governing spikelet fertility; one of them
(spf5) corresponded to a major locus specifying pollen
fertility (pf5) and the other (spf6) corresponded to a major
locus conditioning embryo sac fertility (ef6). Our results
clearly showed that ef6 is the same as the previously
identified S5 locus for wide compatibility (Ikehashi and
Araki 1986; Liu et al. 1992, 1997; Yanagihara et al. 1995),
whereas pf35 specifying pollen fertility coincided with the
/5 locus for indicaljaponica hybrid sterility previously re-
ported by Wang et al. (1998). Zhuang et al. (2002) also
mapped a locus for pollen fertility on chromosome 5 lo-
cated in the same vicinity as the one identified in this study.

In addition to the two major QTLs for pollen and
embryo sac fertility, spf8 also has substantial effect on
spikelet fertility, which is apparently independent of
pollen fertility and embryo sac fertility. Recent results of
a cytological study by Liu et al. (2004) showed that, in
addition to pollen and embryo sac fertility, reduced
affinity (or compatibility) between the uniting gametes is
also an important cause for sterility in an indica/japonica
hybrid. Whether spf8 is a QTL for affinity (compatibil-
ity) between the uniting gametes remains to be investi-
gated in future studies.

Previous studies repeatedly showed that ‘02428’ is a
wide compatibility variety with the “‘neutral” allele at
the S5 locus as a wide-compatibility gene (Liu et al.
1992, 1996, 1997). The data obtained in this study
showed that the ‘02428’ allele at the pf5 locus also has a
positive effect on fertility in heterozygote (n/j) with the
‘Balilla’ allele, as compared with the heterozygote of the
‘Nanjing 11’ allele with the ‘Balilla’ allele (i/j). More-
over, pf5 seems to have a more prominent effect on
spikelet fertility than does the ef6 locus, as evidenced by
the relative effects of spf5 and spf6. However, because
‘02428’ has many japonica characteristics and is re-
garded essentially as a japonica variety, it remains to be

determined whether the ‘02428’ allele at the pf5 locus is a
wide-compatibility gene for pollen fertility. The same
issue also applies to the remaining QTLs (e.g., pf12 and
spf8).

It should be noted that the population used in this
study was derived from the same three-way cross as used
for the study by Liu et al. (1997). However, there were
several discrepancies observed in this study as compared
with the results of Liu et al. (1997). The first difference is
that the spf5 locus governing spikelet fertility via pollen
fertility (pf5) observed in this study was not detected in
the previous study, which is accounted for by a gap in
the linkage map of Liu et al. (1997) that occurred at
exactly the same genomic location as spf5 (or pf5). The
second difference occurred in the shape of the distribu-
tion curve of the spikelet fertility in the ‘02428’/*Nanjing
11’//‘Balilla’ F; population. This is largely due to the
fluctuations of the environmental conditions in the two
years when the experiments were conducted in the field.
Another difference is the failure of this study in detecting
a minor QTL for spikelet fertility on chromosome 2
resolved by Liu et al. (1997), also likely to be the results
of environmental fluctuations.

The present findings might have significant implica-
tions in rice breeding programs. Utilization of the
wide-compatibility gene (S5n) for development of in-
tersubspecific hybrids has been a practice in many rice
breeding programs. However, it has been frequently
found that the S5n gene alone is not sufficient for pro-
ducing indica/japonica hybrids with normal fertility. We
now understand that the wide-compatibility gene at S5
only overcomes the sterility caused by embryo sac
abortion, and that a gene from the pf5 (spf3) locus for
overcoming pollen sterility is also essential for normal
fertility hybrids. Moreover, a gene governing the affinity
between the uniting gametes may also help, should there
exist such a locus. This can easily be achieved with
marker-assisted selection using the markers identified in
the present study.
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