ORIGINAL PAPER

KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (*Oryza sativa*)

Madhur Gupta · Xuhua Qiu · Lei Wang · Weibo Xie · Chengjun Zhang · Lizhong Xiong · Xingming Lian · Qifa Zhang

Received: 4 August 2008 / Accepted: 22 August 2008 © Springer-Verlag 2008

Abstract KT/HAK/KUP potassium transporter proteinencoding genes constitute a large family in the plant kingdom. The KT/HAK/KUP family is important for various physiological processes of plant life. In this study, we identified 27 potential KT/HAK/KUP family genes in rice (Oryza sativa) by database searching. Analysis of these KT/HAK/KUP family members identified three conserved motifs with unknown functions, and 11-15 trans-membrane segments, most of which are conserved. A total of 144 putative cis-elements were found in the 2 kb upstream region of these genes, of which a Ca²⁺-responsive *cis*-element, two light-responsive cis-elements, and a circadianregulated cis-element were identified in the majority of the members, suggesting regulation of these genes by these signals. A comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA samples of 27 tissues covering the entire life cycle from three rice genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. We identified preferential expression of two OsHAK genes in stamen at 1 day before flowering compared with all the other tissues. OsHAK genes were also found to be differentially upregulated or downregulated in rice seedlings subjected to treatments with three hormones. These results would be very useful for elucidat-

Electronic supplementary material The online version of this article (doi:10.1007/s00438-008-0377-7) contains supplementary material, which is available to authorized users.

 $\begin{array}{l} M. \ Gupta \cdot X. \ Qiu \cdot L. \ Wang \cdot W. \ Xie \cdot C. \ Zhang \cdot L. \ Xiong \cdot X. \ Lian \ (\boxtimes) \cdot Q. \ Zhang \end{array}$

National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China e-mail: xmlian@mail.hzau.edu.cn ing the roles of these genes in growth, development, and stress response of the rice plant.

Keywords Potassium transporters \cdot *Oryza sativa* \cdot Phylogenetic analysis \cdot *cis*-Elements \cdot Microarray

Introduction

Potassium (K⁺) is the most abundant inorganic cation and performs important functions in various processes of plant life. Plants possess transport systems for acquisition of K⁺, which are referred to as channels and transporters (Maathuis and Sanders 1994, 1997). Potassium transporters in plants can be divided into four families: the KT/HAK/ KUP family, Trk/HKT family, KEA (K⁺ efflux anti-porter) family, and CHX (cation/hydrogen exchanger) family. In plants, KT/HAK/KUP family genes were identified by sequence homology with K⁺ uptake permease from bacteria (KUP) and high-affinity K⁺ transporters (HAKs) from fungi (Quintero and Blatt 1997; Santa-Maria et al. 1997; Fu and Luan 1998; Kim et al. 1998). KT/HAK/KUP genes have been cloned from pepper (Capsicum annum) (Martinez-Cordero et al. 2004), tomato (Lycopersicon esculentum) (Wang et al. 2002; Nieves-Cordones et al. 2007), lotus (Lotus japonicus) (Desbrosses et al. 2004), grapevine (Vitis vinifera) (Davies et al. 2006), and seagrass (Cymodocea nodosa) (Garciadeblas et al. 2002). Twenty-six KT/HAK/ KUP family genes in rice (Oryza sativa) (Amrutha et al. 2007) and 13 in Arabidopsis thaliana (Maser et al. 2001) have been identified based on sequence analysis.

In plants, phylogenetic analysis of 13 *KT/HAK/KUP* gene sequences from *Arabidopsis*, five from barley (*Hordeum vulgare*), and two from rice grouped these KT/HAK/KUP transporters into four clusters (Rubio et al. 2000). This was

Communicated by A. Tyagi.

further confirmed by phylogenetic analysis of 17 KT/HAK/ KUP genes in rice (Banuelos et al. 2002). Most of the functionally characterized KT/HAK/KUP transporters belong to clusters I and II, while functions of clusters III and IV transporters are less known (Grabov 2007). Studies showed that most of the cluster I transporters likely have function in highaffinity K⁺ uptake. For example, it was shown that expression of AtHAK5, a member of cluster I, becomes upregulated under K⁺ starvation conditions (Ahn et al. 2004; Gierth et al. 2005; Qi et al. 2008). mRNA levels of AtHAK5 orthologs in other plant species, such as *LeHAK5* in tomato (Wang et al. 2002) and HvHAK1 in barley (Santa-Maria et al. 1997), were also induced under K⁺ starvation. In rice, OsHAK1, a member of this cluster, was functionally characterized in yeast (Saccharomyces cerevisiae), where it mediates high-affinity K⁺ uptake (Banuelos et al. 2002). It was also shown that some of this cluster transporters are also involved in Na⁺ influxes, as reported in barley, HvHAK1 (Santa-Maria et al. 1997) and in reed plants (Phragmites australis Trinius), Pha-HAK1 (Takahashi et al. 2007).

Most of the cluster II transporters were proposed to have a role in low-affinity K⁺ transport complementing potassium channels (Senn et al. 2001; Garciadeblas et al. 2002). OsHAK7 and OsHAK10, belonging to this cluster, mediate low-affinity K⁺ uptake in heterologous system (Banuelos et al. 2002). Transient expression of the OsHAK10-green fluorescent protein (GFP) fusion protein in living onion epidermal cells targeted this protein to the tonoplast, strongly suggesting that this transporter locates to the tonoplast of rice cells (Banuelos et al. 2002). The putative function for tonoplast KT/HAK/KUP transporters is to maintain K⁺ homeostasis under K⁺-deficient conditions (Walker et al. 1996; Garciadeblas et al. 2002). Besides K⁺ uptake, cluster II transporters may also involve in regulatory processes. A mutation in AtKUP/HAK/KT2 causes short hypocotyl phenotype (Elumalai et al. 2002), while knock-out plants of AtKUP4=AtKT3 (or TRH1) show tiny root hair phenotype (Rigas et al. 2001). Recently, Vicente-Agullo et al. (2004) reported that AtKUP4=AtKT3 is required for auxin transport. Cluster II transporters may also be involved in salinity response, because expressions of AtHAK6 and AtHAK2 were affected by increased salt concentrations (Maathuis 2006).

KT/HAK/KUP transporters belonging to clusters III and IV have been less studied. *AtHAK11* belonging to cluster III may be involved in response to salinity (Maathuis 2006). Recently, *PhaHA5* (in cluster IV) from reed plants was predicted to localize on plasma membrane, and may act in the high-affinity K⁺ uptake and could be involved in Na⁺ transport (Takahashi et al. 2007).

Although the reported studies of potassium transporters are numerous, there has been no report on the coordinated expression in a global scale of the entire set of potassium transporters in any plant species. Moreover, it was suggested that regulation of potassium transporters is controlled by several signaling cascades, most of which are related to hormones (Ashley et al. 2006), indicating that phytohormones are of immense importance in the functioning of KT/HAK/KUP transporters.

Rice is a staple crop and has also become a model for plant science research in cereals because of the smallest genome among the major cereals and the availability of a range of genetic resources and genomic tools (Zhang 2007). The objective of this study was to provide a global overview of the KT/HAK/KUP family genes in the rice genome, including the identification of the entire gene family members, their phylogenetic relationship, motif compositions, protein architecture, and possible cis-elements. The expression profiles of the gene family in the entire rice life cycle and under different hormone treatments conditions were also analyzed using data from microarrays. Much of the analysis was also in comparison with features of this gene family in Arabidopsis. It is expected that such a comprehensive analysis may provide important clues for understanding the diverse roles of these KT/HAK/KUP transporters in growth and development.

Materials and methods

Data search and analyses

For obtaining sequences of the KT/HAK/KUP family genes in rice (OsHAK), the protein family ID PF02705 was queried in the database of The Institute of Genomic Research (TIGR) (http://www.tigr.org). All the corresponding protein sequences of the putative KT/HAK/KUP family members were downloaded and confirmed with the Pfam database (http://www.sanger.ac.uk/Software/Pfam/search. shtml). Information about the chromosomal localization, coding sequence (CDS) length, amino acid (aa) length, fulllength cDNA accessions, and protein localization was obtained for each gene from TIGR and the Knowledge-Based Oryza Molecular Biological Encyclopedia (KOME) (http://cdna01.dna.affrc.go.jp/cDNA). The KT/HAK/KUP family genes in Arabidopsis were downloaded by querying the protein family ID PF02705 in the database of The Arabidopsis Information Resource (http://www.arabidopsis. org) and confirmed by using Pfam database (http://www. sanger.ac.uk/Software/Pfam/search.shtml).

Alignment of the protein sequences was performed using CLUSTAL_X version 1.83 (Thompson et al. 1997). A phylogenetic tree was constructed using MEGA4 (Tamura et al. 2007). Bootstrap testing was performed with 1,000 resampling. The Multiple Em (Expectation Maximization) for Motif Elicitation (MEME) program version 3.5.4 (Bailey and Elkan 1994) was used to predict the potential motifs in the putative KT/HAK/KUP family gene sequences.

Promoter sequences (2 kb upstream of the translation start codon) for all KT/HAK/KUP family members were obtained from TIGR (http://www.tigr.org/tdb) and subjected to scanning for plant *cis*-acting regulatory DNA elements (PLACE) (http://www.dna.affrc.go.jp/PLACE/signalscan. html) to identify all the plant *cis*-elements with more than 6 bp (Higo et al. 1999).

Microarray expression profile

To analyze the expression patterns, the rice KT/HAK/KUP family genes were searched against a database (http:// crep.ncpgr.cn) of hybridization generated using Affymetrix whole genome arrays. In this database, hybridization was conducted using RNA samples obtained with at least two biological repeats from 39 tissues covering the entire life cycle of the plants from three genotypes of cultivated rice, Minghui 63, Zhenshan 97, and their hybrid Shanyou 63, an elite hybrid widely grown in China for more than two decades. For relevance, only hybridization data for 27 tissues were analyzed in this study: (1) calli at 15 days after subculture stage; (2) resistance calli at screening stage; (3) calli at 5 days after regeneration stage; (4) seed germination after 72 h of imbibitions stage; (5) embryo and radical after germination stage; (6) seedling at trefoil stage; (7) shoot at seedling with two tillers stage; (8) root at seedling with two tillers stage; (9) leaf, young panicle at secondary branch primordial stage; (10) sheath, young panicle at secondary branch primordial stage; (11) panicle, young panicle at secondary branch primordial stage; (12) panicle at pistil/ stamen primordial differentiation stage; (13) panicle at pollen-mother cell formation stage; (14) leaf at 4–5 cm young panicle stage; (15) sheath at 4–5 cm young panicle stage; (16) panicle at 4–5 cm young panicle stage; (17) stem at 5 days before heading stage; (18) flag leaf at 5 days before heading stage; (19) stem at heading stage; (20) panicle at heading stage; (21) hull at 1 day before flowering stage; (22) stamen at 1 day before flowering stage; (23) flag leaf at 14 days after heading stage; (24) spikelet at 3 days after pollination stage; (25) endosperm at 7 days after pollination stage; (26) endosperm at 14 days after pollination stage; (27) endosperm at 21 days after pollination stage. Independent expression patterns were also analyzed to display transcript regulation of KT/HAK/KUP family genes under hormone treatments in seedling at trefoil stage of the three rice genotypes. The hormones used were naphthalene acetic acid (NAA), gibberellic acid (GA₃), and kinetin (KT).

In performing the analysis, we included only genes with 100% identity over the entire length with the entire set of the probes for each gene, which were labeled 'Present' by Affymetrix MAS 5.0 with average signal values of more than 100. Data for only one probe of each gene were used for expression analysis.

To identify the preferential expressed gene in a tissue, we selected one tissue and then compared it with all other 26 tissues by performing Student's t test in each genotype separately. Gene in a tissue with P value less than 0.05 and expression values more that twofold compared to all other tissues was considered to be expressed preferentially. Under hormone treatments conditions, genes that were upregulated or downregulated more than twofold with P value less than 0.05 compare to control were considered as showing differential expression. The average of biological replicates for each sample was used for consideration of twofold expression values.

RNA extraction and RT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen, Shanghai, China) according to the manufacturer's instructions from the following tissues of field-growing plants of three genotypes of cultivated rice, Minghui 63, Zhenshan 97, and Shanyou 63: hull at 1 day before flowering, stamen at 1 day before flowering, flag leaf at 14 days after heading, young panicle of 4–5 cm in length, trefoil-stage seedling treated with 100 μ M NAA (Sigma-Aldrich, Shanghai, China), trefoil-stage seedling treated with 100 μ M KT (Sigma-Aldrich, Shanghai, China). For hormone treatments, seedlings at trefoil stage were sprayed with each hormone independently; samples were collected at 5, 15, 30, and 60 min after treatment and ground simultaneously.

Two micrograms of total RNA from each sample was reverse-transcribed in a total volume of 20 µl containing 0.5 mg oligo(dT)₁₅, 0.75 mM dNTPs, 10 mM DTT, and 200 units M-MLV reverse transcriptase (Promega, Beijing, China). ExTaq DNA polymerase (TaKaRa, Dalian, China) was used for PCR amplification in an ABI Thermocycler 9700 (Applied Biosciences, Foster City, CA, USA) with the following cycling profile: 94°C for 3 min, followed by 28–38 cycles (depending on the expression levels of the genes) at 94°C for 1 min, 57°C for 1 min, and 72°C for 1 min, with a final extension at 72°C for 5 min. All gene-specific primers for RT-PCR were designed based on the sequences of the respective KT/HAK/KUP family genes (Table 1). Each RT-PCR pattern was verified by triple replicate experiments, and a rice *actin* cDNA was used as an internal control.

Results

The KT/HAK/KUP potassium transporters family in rice

Search of the TIGR database obtained significant matches with 48 gene models annotated as "potassium transporter" representing 27 distinct loci (Table 2). BLAST analysis

Table 1O	SHAK genes	primers used	for RT-PCR	analysis
----------	------------	--------------	------------	----------

Genes	Primers	PCR product size (bp)
OsHAK3	5'-TGTCCAAATCACCCCACT-3' 5'-CTGTACTGCCAGACGAAGAC-3'	385
OsHAK4	5'-GACGGGTTCTACAAGTTCGT-3' 5'-AGCAGGAACGGCACTAAGTA-3'	395
OsHAK6	5'-GATGCACTACCCACCTGTTC-3' 5'-GGTGATGAGAACACACACGA-3'	499
OsHAK7	5'-CTATCAGCCTGGAGTTGGTG-3' 5'-AGTGAAGTGGCCAAGATCAG-3'	502
OsHAK8	5'-TTCGTGTTCTGGACACTCAC-3' 5'-CGATGAGTACCGTAATGCTG-3'	449
OsHAK10	5'-ACATGTCTGATGTCCCTGGT-3' 5'-GGTAGCCGTACCTGACAATG-3'	502
OsHAK13	5'-ACTTCGAGAACCAACTGCTG-3' 5'-CTATACCCTGTACGCCATGC-3'	500
OsHAK15	5'-GGAGGTTGGGCTCTGATAAT-3' 5'-CTCCTCGTCAGAGTCGATGT-3'	501
OsHAK16	5'-TACACTGAATTGGTGCAAGG-3' 5'-GGATTGGTGTAAGCATCTCC-3'	397
OsHAK17	5'-TGGTACTGTGTGTGTCGGTGTT-3' 5'-CCGTCCTGTATGTTGCTGTA-3'	418
OsHAK18	5'-CAGTTCTTTCTGCGACTGGT-3' 5'-TGCTGGCCAAAGTATAGGAG-3'	500
OsHAK20	5'-ACGTCGTGTTCACCTTCACT-3' 5'-CCTCGTAGACGAACACCTTG-3'	510
OsHAK21	5'-TCTCCCTCATCGTCTACAGC-3' 5'-AGAGCAGCCACAAGAGAATG-3'	501
OsHAK27	5'-ATGATCATCACAACCCTCCT-3' 5'-CAAAGATGAGCACAGAGTGG-3'	400
Actin	5'-TATGGTCAAGGCTGGGTTCG-3' 5'-CCATGCTCGATGGGGTACTT-3'	177

against the Pfam database showed that all of them belonged to the OsHAK family. The 27 *OsHAK* genes are distributed on eight rice chromosomes: chromosomes 1, 3, and 7 each contains four genes, and chromosomes 2, 4, 6, 8, and 9 each contains three genes.

All the predicted OsHAK proteins have a typical "k_trans" domain (PF02705), which is specific to KT/HAK/ KUP potassium transporters family members. Twenty of the 27 OsHAK proteins show localization on plasma membranes by a PSORT analysis (http://psort.nibb.ac.jp/), a location that is best suited for their function as transporter. The remaining seven proteins show localization on four different organelles: three on chloroplast thylakoid membrane, two on mitochondrial inner membrane, one on vacuolar membrane (tonoplast), and the remaining one on microbody (Table 2).

The full-length cDNA sequences were compared with the corresponding genomic DNA sequences to determine the numbers and positions of exons and introns within each *OsHAK* gene (Fig. 1) by using GSDS (http://gsds.cbi.pku.

edu.cn/chinese.php) (Guo et al. 2007). The coding sequences of all the *OsHAK* genes are disrupted by introns, with numbers varying from one to nine. Twelve of the 27 genes contain eight introns each. This suggests that the gene structure in rice is more divergent than *Arabidopsis*, in which the number of introns varied from five to nine (Ahn et al. 2004).

Phylogenetic analysis

Based on the joint unrooted phylogenetic tree generated from alignments of the full-length protein sequences of the KT/HAK/KUP family members in rice (27 genes) and Arabidopsis (13 genes) (Fig. 2), the KT/HAK/KUP family proteins fell broadly under four major clusters (I, II, III, and IV), with well-supported bootstrap values. Cluster I contains nine members (with eight members of rice and one member of Arabidopsis), which can be further divided into subcluster IA with four members, subcluster IB with four members, and a diverge member (AtHAK5). Cluster II contains 15 members (with nine members of rice and six members of Arabidopsis) and can be divided into subcluster IIA with seven members and subcluster IIB with eight members. Cluster III contain 12 members (with six members of rice and Arabidopsis each), which can be divided into subclusters IIIA and IIIB, with six members each. Cluster IV had four members all from rice, which can be further divided into subclusters IVA and IVB, with two members each.

Comparison of the phylogenetic tree with the predicted subcellular localizations of the KT/HAK/KUP family proteins indicated that the same phylogenetic grouping does not mean the same subcellular localization. For example, a proteomic analysis localized AtKUP4=AtKT3 on tonoplast (Jaquinod et al. 2007), while the three proteins OsHAK2, OsHAK3, and OsHAK7 having the highest sequence similarity with AtKUP4=AtKT3 in subcluster IIA (Fig. 2) were predicted to have different subcellular localizations: OsHAK2 and OsHAK3 on plasma membrane and OsHAK7 on microbody. In subcluster IIB, the Arabidopsis protein AtKUP/HAK/KT2 was located on plasma membrane (Nuhse et al. 2004), and two of the rice proteins OsHAK8 and OsHAK9 having highest similarity to AtKUP/HAK/KT2 are also predicted to localize on plasma membrane. In subcluster IIIB, two Arabidopsis KT/HAK/ KUP transporters, AtKUP/KT5 and AtKUP/HAK/KT7, were localized on tonoplast (Jaquinod et al. 2007), whereas their close rice homologs OsHAK14 and OsHAK15 were predicted to be localized on mitochondrial inner membrane and on chloroplast thylakoid membrane, respectively. Another subcluster IIIB transporter, AtKUP/HAK/K12, was located on chloroplast membrane, but the exact localization that they either are located on envelop or are located on thylakoid membrane cannot be predicted at this stage (Kleffmann et al. 2004). High expression of AtKUP/HAK/

Table 2OsHAK genes in rice

Gene ^a	Probeset ID ^b	Locus ID ^c	CDS ^d	aa ^e	Fl-Acc. ^f	P.L. ^g	TMS^h	Gene reported ⁱ
OsHAK1	Os.11262.1.S1_a_at	Os04g32920	2,406	801	AK100669	PM	12	Banuelos et al. 2002
OsHAK2	Os.26989.1.S1_a_at	Os01g70940	2,352	783	AK070575	PM	13	
OsHAK3	Os.29851.1.S1_x_at	Os01g27170	2,427	808	AK100340	PM	14	
OsHAK4	Os.2358.1.S1_at	Os08g36340	2,094	697	AK071698	CTM.	12	
OsHAK5	Os.17158.1.S1_at	Os01g70490	2,313	770	AK241580	PM	13	
OsHAK6	Os.31355.2.S1_x_at	Os01g70660	2,247	748	AK107477	PM	13	
OsHAK7	Os.15701.1.S1_x_at	Os07g47350	2,346	781	AK100652	Mb	15	Banuelos et al. 2002
OsHAK8	OsAffx.3292.1.S1_s_at	Os03g21890	2,382	793	NF	PM	14	
OsHAK9	Os.13483.1.S1_at	Os07g48130	2,367	788	AK070738	PM	14	
OsHAK10	Os.5614.1.S1_at	Os06g42030	2,532	843	AK107132	Tonoplast	13	Banuelos et al. 2002
OsHAK11	Os.53340.1.S1_at	Os04g52390	2,376	791	AK072123	PM	13	
OsHAK12	Os.17644.1.S1_at	Os08g10550	2,382	793	AK069377	PM	11	
OsHAK13	Os.49807.1.S1_at	Os06g45940	2,337	778	AK111663	PM	13	
OsHAK14	Os.19000.1.S1_at	Os07g32530	2,580	859	AK106582	MIM.	15	
OsHAK15	Os.53894.1.S1_x_at	Os04g52120	2,604	867	AK100672	CTM.	13	
OsHAK16	Os.20541.1.S1_at	Os03g37840	2,436	811	AK066919	CTM.	11	
OsHAK17	Os.6037.2.S1_x_at	Os09g27580	2,124	707	AK068574	PM	13	
OsHAK18	Os.26972.1.S1_at	Os09g38960	2,382	793	AK065464	PM	15	
OsHAK19	NF	Os02g31910	2,229	742	AK106353	PM	12	
OsHAK20	Os.49906.1.S1_at	Os02g31940	2,244	747	AK119325	PM	12	
OsHAK21	OsAffx.3426.1.S1_at	Os03g37930	2,400	799	NF	PM	13	
OsHAK22	Os.27454.1.S1_x_at	Os07g01214	2,427	808	AK066544	MIM.	11	
OsHAK23	Os.53102.1.S1_s_at	Os09g21000	2,634	877	AK070831	PM	14	
OsHAK24	OsAffx.27660.1.S1_at	Os06g15910	2,319	772	NF	PM	15	
OsHAK25	Os.26684.1.S1_at	Os02g49760	2,316	771	AK111629	PM	14	
OsHAK26	Os.24908.1.S1_at	Os08g39950	2,220	739	AK072472	PM	13	
OsHAK27	Os.16325.1.S1_at	Os03g37830	2,436	811	AK068853	PM	13	

PM plasma membrane, CTM chloroplast thylakoid membrane, MIM mitochondrial inner membrane, Mb microbody, NF not found

^a Systematic designation given to rice OsHAK genes in this study

^b Probeset ID of OsHAK genes obtained from CREP (http://crep.ncpgr.cn)

^c Locus ID of OsHAK genes

^d Length of CDS in basepairs obtained from TIGR

^e Protein length (number of amino acids) obtained from TIGR

^f Full length cDNA accession number of OsHAK genes obtained from KOME

^g Localization of OsHAK protein supported by PSORT (http://psort.nibb.ac.jp)

^h Number of transmembrane segments posses by *OsHAK* genes, supported by Transport Classification Database (http://www.tcdb.org/ana-lyze.php)

ⁱ OsHAK genes reported in earlier studies

KT12 was observed in young leaves when compared to old ones (Ahn et al. 2004). K⁺ plays a significant role in CO₂ fixation (Pfluger and Cassier 1977). Thus, *AtKUP/HAK/ KT12* may play important role in photosynthesis. However, OsHAK23 having high similarity with AtKUP/HAK/KT12 was predicted to be localized on plasma membrane. No homologous rice transporters were found to correspond to AtHAK5 (a diverge member in cluster I) and AtKUP/HAK/ KT11 (subcluster IIIA); both of them were localized on plasma membrane (Qi et al. 2008; Nuhse et al. 2004). Thus, proteins with the same phylogenetic grouping by sequence similarity frequently have different subcellular localizations, suggesting different cytological functions.

Motif analysis and protein architecture

Based on the protein sequence alignment using the MEME software, three putative conserved motifs, each with 50 aa in length, were identified in the OsHAK family with E values <1.00E-30 (Fig. 3). Among these three

Fig. 1 The GSDS (http://gsds.cbi.pku.edu.cn/chinese.php) output of the *OsHAK* genes structure in rice. 0, 1, 2 intron phase indicate splicing patterns: in phase 0, splicing occurs after the third nucleotide of the first codon; in phase 1, splicing occurs after the first nucleotide of the single codon; in phase 2, splicing occurs after the second nucleotide. Subclusters IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB correspond to the phylogenetic clusters from Fig. 2

motifs, motif 1 has six conserved amino acid residues, motif 2 has ten conserved amino acid residues, and motif 3 has 11 conserved amino acid residues exactly at the same position. All three putative conserved motifs are present in all the OsHAK family members except OsHAK22, in which only motifs 1 and 2 were identified (Fig. 4). Motif 1 appeared twice in OsHAK2 and motif 3 appeared twice in OsHAK19.

Searching of Transport Classification Database (http:// www.tcdb.org/analyze.php) identified 11–15 *trans*-membrane segments (TMSs) in the KT/HAK/KUP family transporters in rice (Table 2), which were classified into 14 TMS regions by **Fig. 3** Protein sequence alignment of three putative conserved motifs identified in *OsHAK* genes in rice obtained by MEME. Each of the three motifs has 50 conserved amino acids residues, as shown in color

Motif 1			
NAME	START P-VALUE	SITES	
OsHAK10	384 5.41e-54	IRUPVLAIAI LAAVVGSQAVITGTFSMIKQCTALGCF RVKIV TSDKV GQIVI EINW	ILMILCLAIT
OsHAK7	347 1.07e-53	LFUPVFVIAT LAAVVGSQSIISATFSIVKQCLSLGCF RVKVV TSRWI GQIYI EINW	ILMVLCLAVT
OsHAK3	365 2.46e-53	IFUPVLVIAT LAAIVGSQAVISATFSIVRQCTALGCF RVKIV TSRRI GQIYS EINW	ILMLLCIAVT
OsHAK8	350 2.89e-53	VRWPVLVLAI LASVVGSQAIISGTFSIINQSQSLSCF RVKVV TSDKI GQIYI EINW	LLMILCIAVT
OsHAK11	370 4.72e-53	IYUPAFVIAT AAAIVASQATISATYSIIKQALALGCF RVKIV TSKKFLGQIYI DINW	VLLILCIAVT
DsHAK2	349 1.68e-52	IFUPVFVVAT LAAVVGSQAVISATFSIVKQCHSLGCFPRVKVVHTSRWIYGQIYI EINW	ILMVLCVAVT
DsHAK18	368 3.65e-52	ILWPAFAVAT AAAIVASQATISATYSIIKQALALGCF RVKIIHTSKKYLGQIYS DINW	ILMVFCIAVT
DsHAK24	351 9.0/e-52	IRUPVLGIAI LASVVGSQAIITGTFSIIKQCSSLNCF RVKIV TSSTV GQIVI EINW	ILMILCLSVT
USHAK9	350 1.916-51	VRWPVLVLAI LASVVGSQAIISGTFSIINQSQSLSCF RVKVV TSENI GQIVI EINW	LLMVLCIAVT
Dellakiz	3/U 6.098-51	ITUPVETIAT LAANTA SQATTSATESCT KOAMAL CCE RUSVV TSKKEL QUTT DINW	VLMILCIAVI
DoHAK25	457 4.96e-50 354 0.196.49	I DUDULUTAT I AAUUSSAAUTTETESTTKOSSELSSE SUKTU TSSKVHUUTITETUM	FLMVMC111V
DeHAV13	304 2.108-49	UPUDU FIAT LARAVOSQUVITOTESTIKUCSSLSCE OVRIV ISSTV OUTITETINU	UL MELCLAVI
DeHAKE	374 2 236.48	ADTEVESTOV ABATTASOBNISGAFATTAOSOTI CCF DUDVI TSTEF COVIT FINY	VENSECEAVI
OsHAK22	344 1 12e-47	LEUPTLULAL AASUVESOANTSCAFATIS SOANGCE BUKUV ISBOVOGOVYT EINI	LIGARACIANT
OsHAK27	386 2 21e-46	NEWPTFILAV AASIIGSOAMISCAFATIS LOTLNCE RVKIL TSROYSGOLVI EVNE	LLCVGACLVT
DsHAK26	396 3.51e-46	LEUPHEIIAT LAAIVASOALISASESIIROSIALGCE RVTMK TSGK EGOVYS EINY	FLMVACILIT
DsHAK20	369 6.98e-46	LEUPVEVVAL MAAIIASOAMLSGAFAILSKAL LOCE RVEVV TSNKYEGOVYI EVNE	LIGVASVAIT
OsHAK6	397 9.81e-46	LFUPHFVVST LAAIVASQSLISASYSIIRQSIALGCF RTTVK TSDKYEGQVYC EINY	VLMVVCVLIT
OsHAK19	368 3.01e-45	LFUPVFVVAI NGAIIASQAMLSGAFAILSKALSLGCF RVEVV TSNKYEGQVYI EVNF	LIGAASVAVT
DsHAK1	388 3.37e-45	LFUPTFIVAI LAAIIASQAMLSGAFAILSKALSLGCL RVRVI TSKKYEGQVYI EVNF	MMGLASIIVT
OsHAK14	437 1.94e-44	AFUPVVFIAI LAAIIASRTHTTAIFSTIKQATALGCF RLKII TSRSFHGQIYI MMNW	FLLVSCLAFV
OsHAK21	379 1.62e-43	LFUPTFIMAI AASIIGSQAMISCAFATVS LQSLSCF RVKIL TSKRF GQLYI GVNF	LLCVAACVVT
OsHAK17	354 2.0De-43	VYUPHFVVAT LAAIVASQSLISATFSVIKQSVVLDYF RVKVV TSQ KEGEVYS EINY	ILMVLCVGVI
OsHAK4	349 1.73e-42	VYWPHFIIAT LAAIVASQSLISATFSVIKQSVVLDYF RVKVV TSKDKEGEVYS ETNY	MLMLLCVGVI
OsHAK16	390 1.18e-40	LFUPNFVLAI MTSVIGCQAMVSCAFATMS LQTLNCF RIKIL TSRRXSGQLXS EVNF	FLCLLSCVIT
OsHAK15	449 1.12e-39	VFUPVFLIAN LAALIASRINITAIFQCLKQSIALGCF RLKII ISRKFMAKIXI VVNW	FLLFSCLGFI
Motif 2			
NAME	START P-VALUE	SITES	
DsHAK10	301 9.67e-56	KFLKKTQRGG WMSLGGILLCITGSEAMFADLG FNQLSIQIAFTCMVY SLILAYNGQAA	YLCKHHIIES
OsHAK19	288 7.17e-53	DYFRENGKEA WVSLGGVVLCITGTEAMFADLG FNIRAIQLSFTCVLF SVALCYMGQAA	YLRKFPENVG
OsHAK8	267 7.17e-53	KFLKKTRKYG WMSLGGILLCMTGSEANFADLG FSYSAIQLAFTSLVY ALILAYMGQAA	YLSKHHDFYS
OsHAK9	267 1.07e-51	KFLRKTKKSG WMSLGGILLCHTGSEAMFADLGHFSYSAIQLAFTTLVY ALILGYNGQAA	YLSKHHTLNS
OsHAK20	289 1.26e-51	DYFRRNGKEA WVSLGGAVLCITGTEAMFADLG FNIRAIQLSFTCVLF SVALCYNGQAA	YLRKFPEDVG
OsHAK25	271 1.28e-49	QFLKKTQTGG WHSLGGILLCVTGSEAMYADLG FSQSSIKIAFHSVVY ALVLAYNGQAA	YISQHHSFEN
OsHAK24	268 2.93e-49	KFLRKTQTGG WMSLGGILLCVTGSEAMXADLG FTQNSIKMAFTLLVY ALVLAYNGQAA	YISRHHNFED
OsHAK23	377 9.76e-49	LFFQTNGIKA WSALGGCVLCITGAEAMFADLGHFSVKSIQVAFTAVVF CLLIAYNGQAA	YLMKYPFAVE
OsHAK5	305 5.92e-48	DYFERNGKQG WISLGGVILCITGTEAMFADLG FNVRAIQIGFSVVLL SVLLAVIGQAA	YLRIYPEHVA
OsHAK12	290 2.05e-47	RYFRRGKSES WTSLGGIMLSITGTEAL YADLCHF VLAIQIAFTLVVF CLLLAYTGQAA	YIISNKDHVV
DsHAK11	290 3.33e-47	RYFORRNSDS WASLGGIMLSITGTEALFADLC F VFAIQIAFTLIVF CLLLAYTGQAA	YIIAHKDHVA
DsHAK26	316 4.78e-47	IYFIRNKRAA WETLGAIVLCITGAEAMFADLG FNKSSIQMAFSVIVY SMILAYAGQAA	FLVKNPSKLS
DsHAK18	288 1.75e-46	YRYFKRGKTS WTSLGGIMLSITGTEALFADLSYF VQAIQIAFTVVVF CLLLQYTGQAA	FIAANTNQVS
USHAK3	284 1./5e-4b	RFFQHTGKDG WISLGGILLSMTGTEAMYADLG FTAASIRVAFVOLIY CLVLQYMGQAA	FLSKSPHCDI
DsHAK4	269 1.97e-46	RFFNTNQTRG WQLLGGTVLCITGAEAMFADLG FSKRSIQIAFNSSIY SLVLTYAGQTA	YLINNVDDFS
Dellakt	299 1.978-46	UTFRENGERG WVSLGGVVLCVTGTEGHFADLG FRIRAVUISFNCILFFSVALCYIGUAA	YLRKFPENVS
OsHAK/	20/ 2./98-40	KYFKNIGKDG WESEGOVELAITGTEAMFADEG FTAASIREAFVGAIT CEVEUMOUAA	FLSRNMSAVE
DoHAK14	30/ 2.138-40	ITTERNETOR WEST COLLECT OSERATERDE CITES VEST CLEE CELLO LA VACENA	FLMENLIENQ
DeHAK17	274 3.57e-45	HEFLENKROG WOLL GETVI CITGAEANFADI GUESKKATOTAFL SSTV SLVLTVAGOTA	VLINNUNDEG
DeHAL/22	264 6 37e-45	DVFPPNGPHG WUSL GEVIL CETETEAL FADL SCESTES TOL SPAFEL V AVILAVAGOAA	VI DUVDDHUG
DsHAK2	269 9.82e-45	KFFRTTGKDG WIALGGILLSNTGCEANFADLG FTSASVRLAFITIIY CLILOYNGOAA	FLSKNILDMP
DsHAKE	317 1.22e-44	YYFAKNKRVG WEOLGAVILCITGAEANFADMG FNKSSIOVAFSTAVE SLILAYSGOAA	YLIKNPGDLS
OsHAK21	299 1.10e-43	DYFRRNKKEG WVSLGSILLCFTGSEALFANLGYFSIRSIQLSFSFALL SVLLTYIGQAA	FLSKNPKNVA
OsHAK27	306 1.22e-43	DYFRRNKKDG WISLSGILLCFTGTEALFSDLGYFSIRSIQLSFSFGLV SVLLAVIGQAA	YLREHPEHIA
DsHAK16	308 7.62e-41	DYFRRNKKDG WVQLGEVLLTFTGTEALFADLGYFSIKSIQLSSTFVLL SVLCTYIGQAA	YLRKHMDQQH
OsHAK15	369 3.10e-37	YYFGRNPFQ& WLSLAGCLLCATGSEAIFANLSYF VRYVQSMFALLVL CLVLAYLGQGA	FLIANQNSSE
14.440			
Motif 3			
NAME	START P-VALUE	SITES	
OcHAK11	00 3.708-54	UNDERDVICK LELITYTETETETETETETETETETETETETETETETETETET	HKIDEDLITY
OsHAK12	00 1.546-55	VDDDDDVIGA ESETTTETET LIKTVEVERABDROUGGTERETSELCK ARVSTT NO	HEIDEELIIT
OcHAKI0	64 1 79 53	SPENTFIELD I COUPART IT TO I TRUCCIUI DADBNORGOTEAL VOI TOB ANUCI I ND	ARIDODLIII
OsHAK8	64 1.79e-53	SETNEETFOV L SPUPWILTLI LIKYVSTVL RADDNGEGGTFALVSLICK HAVSLI NR	OTADEFLATY
OsHAK7	65 3 84e-53	VEDETTIEGT EST TENTETLE LEKYVITVLNADDNGEGGTEALVSLLCB AKESLL NO	OSIDEFLSTY
OsHAK19	85 5 26e-51	IKHPDDLVGV LSLILVTLILI MVKVVFIVLVANDNGDGGTFALVSLISB AKIRNI ND	OTEDANVSNY
OsHAK3	80 7 81e-51	FODEEIVEGV FSLVFWTLTLT LLKYVFIVLAADDNGEGGTFALYSLLVR AKESLM NO	EAADEELTSY
OsHAK20	86 1.31e-50	VKHPDDLVGV LSLMLYTLILI MVKYVFIVLYANDNGDGGTFALYSLISR AKIRMI ND	OTEDANVSNY
OsHAK2	66 1.27e-49	YODEOTVFGV LSLIFWTFTLI LLKYVTIVLSADDNGEGG FALYSLLCR AKLSFL NO	OSADEELSTY
OsHAK23	174 4.82e-49	IKSEVEILGA LSLVMYTIALI FAKYVFIVLKANDNGEGGTFALYSLICRYAKVSLL NQ	QRVDEDISSF
OsHAK1	96 4.82e-49	IGHRDDLVGV LSLILYTLIII MLKYVFIVLYANDNGDGGTFALYSLISRYAKIRMI NQ	QAEDAMVSNY
OsHAK10	77 2.81e-48	SETNEEILGV LSFVFWTLTLV LLKYVCVVLRADDNGEGGTFALYSLLCR ARAALL G	GGGGGGGEPGD
OsHAK14	154 1.10e-47	ITSKEDVLGA LSLVIYTLILI ILLKYTLIALWGNDDGEGGTFALYSLICRNARVSLL NQ	LRSDTRISSF
OsHAK15	166 1.39e-46	ILGEEDVLGA LSLVLYTLISM LVKYVLVVLWANDDGEGGIFALYSLICRNAKVSLI NQ	VHSEKRMSSF
OsHAK5	102 1.39e-46	IKDTNDILGV MSLIIVTVVLL LIKVCFIVLRANDNGDGGTFALVSLISRVARISLI NQ	QAEDAMVSHY
OsHAK27	103 3.62e-46	VRHPDDLLGA LSLIIYSFALFTIVKYVFIALRANDDGDGGGTFALYTLISR AKVSLI NQ	QAEDELISKY
OsHAK25	73 1.27e-45	SAGNEEIYGV LSFVFWTLTLISLVKYVLIVLRADDGGEGGTFALYSLICR VRAGLL GG	AGDELAVGGR
UsHAK16	105 1.08e-44	IKHEDDIIGV LSLIIYSEVLFTMVKIVFIAL ANDDODGGTFALYSLISRYAKVCLI NQ	QAEDELVTRY
UsHAK17	73 1.20e-44	SPTEADYLGI YSINFWTLTLIGVVKYVCIALNADDHGEGGTFAMYSLLCRHADIGILSK	RVYAEEDPLL
OsHAK13	71 3.938-44	REPRESENCE A COMPACT AND A COM	RANHGSLSAY
OcHAK24	6/ 5.2/e-44	SKONLETTOK ESLVEWILTEV LAKIVELVERADDAGEGGTFALYSLICKRVRAGEL	ARAAAGEELD
OcHAK4	05 7.788-44	TOUDDUNGU I SI TUVSENI ETUTETUEUA UANDUNGONDALUST TODANIST	ALT TEEENLI
OsHAK21	114 5 400 42	DPGFADFVGI LSTILWTFTMICI VKVVFTVI KAND GFGGTPAT VCI I DA UNDER NA G	DUTHI LOD TH
OsHAKE	115 4.69e-41	DADATDFLGI LSLIIWTLTLMSLVKYALIVLKADDHGEGGTFALYSLLROHVNFKGNI V	PLTRLESDVH

Fig. 4 Organization of putative motifs in *OsHAK* genes identified by MEME. *Numbered color boxes* represent different putative motifs. The expected values calculated by MEME are shown after the gene names. Subclusters IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB correspond to the phylogenetic clusters in Fig. 2

protein sequence alignment (Supplementary Fig. 1). Of the 14 TMS regions, the fifth to twelfth TMS regions are highly conserved among all OsHAK transporters, indicating that these TMSs are important for the basic protein structure and function. Among the less conserved TMS regions, the 13th TMS was the most diverse, and the 14th TMS region, present at the very end of C-terminal, occurred only in five OsHAK transporters (OsHAK3, OsHAK7, OsHAK10, OsHAK14, and OsHAK24). The first TMS was missing in OsHAK3, OsHAK12, OsHAK16, and OsHAK22; the second TMS was missing in OsHAK12 and OsHAK22; the third TMS region was not found in OsHAK12, OsHAK12, OsHAK12, OsHAK12, OsHAK12, OsHAK22; the third TMS region was not found in OsHAK12.

In Arabidopsis, 12–15 trans-membrane segments (TMS) were identified in KT/HAK/KUP family transporters. Similar to rice, they can be classified into 14 TMS regions (Supplementary Fig. 2). In Arabidopsis, 11 (second to twelfth TMS regions) of 14 TMS regions are highly conserved among all KT/HAK/KUP family transporters. The 13th TMS region is the most diverse one among all the 14 TMS regions. Only four Arabidopsis KT/HAK/KUP family

transporters (AtKUP3=AtKT4, AtKUP4=AtKT3, AtKT/ HAK/KUP7, and AtKT/HAK/KUP12) have the 14th TMS region present at C-terminal, while only AtHAK5 does not have the first TMS region. Thus, the basic protein architecture of KT/HAK/KUP family transporters in *Arabidopsis* appears to be more conserved than rice.

cis-Element analysis

By searching the PLACE database with the 2 kb upstream regions of the 27 *OsHAK* genes as queries, a total of 144 putative *cis*-elements with more than 6 bp in length were identified (Supplementary Table S1).

Among these 144 putative *cis*-elements, 22 were found with three or more copies in at least three of the 27 OsHAK family members: ABRERATCAL, ANAERO1CONSEN-SUS, CARGCW8GAT, CIACADIANLELHC, CTRM-CAMV35S, DPBFCOREDCDC3, EECCRCAH1, INRNTPSADB, POLASIG2, PRECONSCRHSP70A, RYRE-PEATLEGUMINBOX, SEBFCONSSTPR10A, SEF4MO-TIFGM7S, TATABOX2, TATABOX3, TATABOXOSPAL,

Fig. 5 Hierarchical cluster display of *OsHAK* genes in rice based on the average signal values in 27 tissues. Numbers from 1 to 27 above the cluster represent the 27 tissues covering the rice life cycle (described in 'Materials and methods'). Each tissue has three parallel displays rep-

resenting Minghui 63 (MH), Shanyou 63 (SH), and Zhenshan 97 (ZH), respectively. The color scale representing average signal values is shown at the *bottom*

CANBNNAPA, MARTBOX, -300ELEMENT, TATABOX4, GAGA8HVBKN3, and GAGAGMGSA1.

ABRERATCAL, a Ca²⁺-responsive *cis*-element found in the upstream regions of 162 Ca²⁺-responsive upregulated genes (Kaplan et al. 2006), was present in 25 of the 27 *OsHAK* genes. Two light-responsive *cis*-elements were identified. The first, INRNTPSADB, a light-responsive transcriptional element found in the tobacco (*Nicotiana sylvestris*) *psaDb* gene (Nakamura et al. 2002), was present in 25 of the 27 *OsHAK* genes. The other, PRECON-SCRHSP70A, a *cis*-element involved in induction of *HSP70A* gene in *Chlamydomonas reinhardtii* by light (von Gromoff et al. 2006), was present in 21 *OsHAK* genes. In addition, the *cis*-element CIACADIANLELHC necessary for circadian expression of light-harvesting complex protein genes (*Lhc*) in tomato (Piechulla et al. 1998) was present in 19 *OsHAK* genes.

Expression profile of KT/HAK/KUP family genes by microarrays

Probes for 26 of the 27 KT/HAK/KUP family genes could be identified in the expression database, which are listed in Table 2. Figure 5 shows a hierarchical cluster display of average signal values for the 26 *OsHAK* genes in 27 tissues covering the entire life cycle of the rice plant in three genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. For these 27 tissues, two biological repeats (except tissues 5, 6, 11, 12, and 13, which have three biological repeats each with two technical repeats) were performed. Signal values of these biological repeats and their average signal values are given in Supplementary Tables S2 and S3, respectively.

Among the 26 genes analyzed in 27 tissues, all OsHAK genes were expressed in at least one tissue from at least one genotype. Five genes (OsHAK2, OsHAK10, OsHAK15, OsHAK23, and OsHAK25) showed expression in all tissues in all three genotypes. OsHAK10 has highest expression level (>10,000) in all three cultivars in stamen at 1 day before flowering. In Minghui 63, seven genes have high expression levels (>5,000), compared with the other following genes: OsHAK1, OsHAK2, and OsHAK15 (in stamen at 1 day before flowering), OsHAK5 and OsHAK16 (in flag leaf at 14 days after heading), OsHAK23 (in hull at 1 day before flowering), and OsHAK25 (in leaf at 4-5 cm young panicle). In Shanyou 63, five genes have high expression levels (>5,000): OsHAK1, OsHAK2, and OsHAK15 (in stamen at 1 day before flowering), OsHAK25 (in flag leaf at 14 days after heading), and OsHAK18 (in sheath at 4-5 cm young panicle). In Zhenshan 97, six genes have high expression levels (>5,000): *OsHAK1*, *OsHAK15*, *OsHAK17*, OsHAK18, and OsHAK23 (in stamen at 1 day before flowering) and OsHAK25 (in leaf at 4-5 cm young panicle). Among the 26 genes, OsHAK14 shows the lowest expression level (<150) in all three genotypes. From our chip data, we also found that most of the KT/HAK/KUP family genes have detectable expression in most of the studied tissues. Similar results were observed in Arabidopsis where many KT/HAK/KUP genes were expressed in roots, leaves, siliques, and flowers of plants grown under K⁺-sufficient conditions (Ahn et al. 2004).

Two OsHAK genes (OsHAK10 and OsHAK15) showed preferential expression in stamen at 1 day before flowering (tissue 22), as determined by the *t* test and the twofold difference threshold. Both of these genes show preferential

expression in Minghui 63, whereas only *OsHAK15* shows preferential expression in Shanyou 63 and *OsHAK10* in Zhenshan 97 (Fig. 6).

Plants acquire K⁺ from soil through root tissues. We specifically investigated the expression of 26 *OsHAK* genes in root at seedlings with two tillers stage (Supplementary Table S3). Fourteen *OsHAK* genes (*OsHAK1*, *OsHAK2*, *OsHAK7* to *OsHAK12*, *OsHAK15*, *OsHAK16*, *OsHAK18*, and *OsHAK23* to *OsHAK25*) showed high or detectable expression simultaneously in all three genotypes, while remaining 12 genes did not show detectable expression with the threshold applied. Similarly, in *Arabidopsis*, 10 of 13 *KT/HAK/KUP* genes were expressed in root tissues (Ahn et al. 2004).

To verify the reliability of the CREP microarray data, we randomly chose five genes (*OsHAK6*, *OsHAK10*, *OsHAK13*, *OsHAK15*, and *OsHAK20*) for RT-PCR analysis using tissues of Minghui 63 (Fig. 7a), eight genes (*OsHAK3*, *OsHAK4*, *OsHAK6*, *OsHAK8*, *OsHAK10*, *OsHAK13*, *OsHAK4*, *OsHAK6*, *OsHAK8*, *OsHAK10*, *OsHAK13*, *OsHAK15*, and *OsHAK20*) using tissues of Shanyou 63 (Fig. 7b), and seven genes (*OsHAK6*, *OsHAK8*, *OsHAK10*, *OsHAK10*, *OsHAK15*, *OsHAK18*, *OsHAK20*, and *OsHAK21*) using Zhenshan 97 (Fig. 7c). All these RT-PCR results matched very well with DNA chip data (Fig. 7; Supplementary Table S3).

Fig. 6 The expression pattern of OsHAK10 and OsHAK15 genes in 27 tissues covering the rice life cycle based on average signal values in three rice cultivars, Minghui 63, Shanyou 63, and Zhenshan 97, respectively. (a) OsHAK10 shows preferential expression in stamen at 1 day before flowering (tissue 22) in Minghui 63 and Zhenshan 97. (b) OsHAK15 shows preferential expression in stamen at 1 day before flowering in Minghui 63 and Shanyou 63. Preferential expression was determined by performing Student's t test in each genotype separately. A gene is said to have preferential expression in a tissue, if the P value is less than 0.05 and more than twofold difference threshold in expression compared to all other 26 tissues

Differential expression of KT/HAK/KUP family genes with hormone treatments

The hierarchical cluster display of expression changes of the 26 genes after hormone treatments (NAA, GA₃, or KT) in the three rice genotypes was given in Fig. 8. We defined a gene as differentially upregulated or downregulated under hormone treatments if the expression level of the gene was significantly higher (more than twofold) or lower (less than twofold) than that under normal conditions in all three genotypes, in addition to being significant at the P < 0.05by t test. Signal values for two biological repeats of hormonally treated tissues and their average signal values are given in Supplementary Tables S4 and S5, respectively. Five KT/HAK/KUP family genes were differentially upregulated or downregulated with hormone treatments. In Minghui 63, OsHAK8 showed differential upregulation with NAA and KT treatments and OsHAK27 showed differential downregulation with NAA treatments (Fig. 9a). In Shanyou 63, OsHAK17 and OsHAK27 showed differential downregulation with all three hormonal treatments (Fig. 9b). Similarly, in Zhenshan 97, OsHAK7 showed differential downregulation in NAA treatments, OsHAK16 showed differential downregulation in GA₃ and KT treatments, and OsHAK27 showed differential downregulation

Fig. 7 RT-PCR results for four tissues of Minghui 63, Shanyou 63, and Zhenshan 97: (1) hull at 1 day before flowering; (2) flag leaf at 14 days after heading; (3) stamen at 1 day before flowering; (4) panicle at 4–5 cm young panicle stage. RT-PCR confirmed the reliability of CREP microarray data obtained for KT/HAK/KUP family genes in rice. (a) In Minghui 63, *OsHAK10* and *OsHAK15* show preferential expression in stamen 1 day before flowering; *OsHAK13* shows the highest expression in stamen 1 days after heading; (b) In Shanyou 63, *OsHAK15* show preferential expression in stamen 1 days after heading. (b) In Shanyou 63, *OsHAK15* show preferential expression in stamen 1 days after heading. (b) In Shanyou 63, *OsHAK15* show preferential expression in stamen 1 day before flowering when compared to all other tissues; *OsHAK3*, *OsHAK6*, *OsHAK10*, and *OsHAK20* show the highest expression in stamen at 1 day before flowering; *OsHAK3*, *OsHAK6*, *OsHAK10*, and *OsHAK20* show the highest expression in stamen at 1 days before flowering; *OsHAK48* shows the highest expression in panicle at 4–5 cm young panicle stage; *OsHAK13* shows the highest expression in flag

under all three hormonal treatments (Fig. 9c). RT-PCR results matched very well with the DNA chip data (Fig. 10; Supplementary Table S5).

Discussion

KT/HAK/KUP potassium transporters family

In present study, 27 members belonging to the KT/HAK/ KUP potassium transporter family in rice were identified, one more member than the previously identified 26 members (Amrutha et al. 2007), the newly identified gene being named *OsHAK27* (Table 2). This is the highest

leaf at 14 days after heading and *OsHAK4* do not show any expression in all the four tissues selected. (c) In Zhenshan 97, *OsHAK10* shows preferential expression in stamen at 1 day before flowering compared to all other tissues; *OsHAK6*, *OsHAK15*, *OsHAK18*, and *OsHAK20* show the highest expression in stamen at 1 day before flowering; *OsHAK8* shows the highest expression in panicle at 4–5 cm young panicle stage; *OsHAK21* shows the highest expression in hull at 1 day before flowering. RT-PCR was performed with the following cycling profile: 94°C for 3 min, followed by 28–35 cycles (depending on the expression levels of different genes; 28 cycles for *OsHAK15*; 35 cycles for *OsHAK8*, *OsHAK10*, *OsHAK13*, and *OsHAK18*; 38 cycles for *OsHAK8*, *OsHAK4*, *OsHAK6*, and *OsHAK21* were performed) at 94°C for 1 min, 57°C for 1 min, and 72°C for 1 min. Rice *actin* cDNA was used as an internal control

number of *KT/HAK/KUP* genes identified so far in a particular plant species, more than twice the number of *KT/HAK/KUP* genes in *Arabidopsis*. The high number of members of a gene family reflects a succession of expansion and rearrangement of the genome by extensive duplication and diversification that frequently occur during the course of evolution (Wang et al. 2007). The rice genome has undergone large-scale duplications, which has a great impact on the amplification of members of gene families in the genome. Recently, Yu et al. (2005) presented evidence for ongoing individual gene duplications in rice, which provides never-ending raw material for studying gene genesis and their functions. Twenty-seven *OsHAK* genes were located on eight rice chromosomes, and there were cases

Fig. 8 Expression profile of *OsHAK* genes after NAA, GA₃, and KT treatments in three rice genotypes, Minghui 63, Shanyou 63, and Zhenshan 97. The color scale representing average signal values is shown at the *bottom*. MH-CK (Minghui 63, control), MH-NAA (Minghui 63, NAA), MH-GA₃ (Minghui 63, GA₃), MH-KT (Minghui 63, KT), SH-CK (Shanyou 63, control), SH-NAA (Shanyou 63, NAA), SH-GA₃ (Shanyou 63, GA₃), SH-KT (Shanyou, KT), ZH-CK (Zhenshan 97, control), ZH-NAA (Zhenshan 97, NAA), ZH-GA₃ (Zhenshan 97, GA₃) and ZH-KT (Zhenshan 97, KT)

where members of *OsHAK* genes were clustered together as closely related genes (Supplementary Fig. 3). These clusters suggest that these genes have evolved from regional duplications (e.g. *OsHAK19* and *OsHAK20*).

Implication of the *cis*-elements for functions of the *OsHAK* genes

cis-Elements play a key role in the regulation of gene expression. Through interaction with the corresponding *trans*-regulatory factors, the *cis*-elements can control the efficiency of the promoters and thus regulate the expression of the genes they control. Studies on *cis*-elements can provide a crucial foundation for further functional dissection of the rice *OsHAK* gene family. To date, there has not been report on the *cis*-elements of the *OsHAK* gene family members. In the current study, we found that upstream regions of most *OsHAK* gene family members contain Ca²⁺-responsive as well as light and circadian regulatory *cis*-elements including ABRERATCAL, INRNTPSADB, PRECONSCRHSP70A, and CIACADIANLELHC. These *cis*-elements may play important roles in regulating expression of genes in response

Fig. 9 Differentially upregulated or downregulated *OsHAK* genes by different hormone treatments (NAA, GA₃, or KT) in seedling at trefoil stage in three rice cultivars: (a) Minghui 63; (b) Shanyou 63; (c) Zhenshan 97. Differentially expressed genes under hormone stress were determined by performing Student's *t* test in each genotype separately. A gene is said to be differential, if it were upregulated or downregulated more than twofold with *P* value less than 0.05 when compared to control (CK)

to these signals. Among these *cis*-elements, the Ca²⁺-responsive *cis*-elements, ABRERATCAL was one of the most widely distributed in the rice *OsHAK* genes. Thus, they may be associated with the key roles of Ca²⁺ as secondary messenger in plants in mediating responses to several environmental stresses that cause changes in activity of enzymes, expression of genes, and cell structure, which, together, help plants to adopt with the ever-changing environment. It was

Fig. 10 RT-PCR analysis of differentially expressed genes under hormone treatments in (**a**) Minghui 63, (**b**) Shanyou 63, and (**c**) Zhenshan 97. Prior to RT-PCR, 100 μ M of NAA, GA₃, or KT were sprayed on Minghui 63, Shanyou 63, and Zhenshan 97 seedlings at trefoil stage (CK, control). Rice *actin* cDNA was used as an internal control. MH-CK (Minghui 63, control), MH-NAA (Minghui 63, NAA), MH-GA₃ (Minghui 63, GA₃), MH-KT (Minghui 63, KT), SH-CK (Shanyou 63, control), SH-NAA (Shanyou 63, NAA), SH-GA₃ (Shanyou 63, GA₃),

also shown in several cases that Ca²⁺ signal is very important in the induction of gene expression by translating stress stimulus (Kaplan et al. 2006). Similar findings were observed in Arabidopsis among the members of KCO potassium channel family belonging to potassium transport system, where gene expression was activated by cytosolic Ca²⁺ (Czempinski et al. 1997). A Ca^{2+} -dependent deactivation of K⁺ channels has also been described in mesophyll cells of Vicia faba, guard cells of maize, and the pulvini motor cells of Mimosa pudica (Fairley-Grenot and Assmann 1992; Li and Assmann 1993; Stoeckel and Takeda 1995). Thus, Ca²⁺ can activate or deactivate a gene by regulating its cis-elements. Similar to ABRERATCAL, two light-regulated elements, INRNTP-SADB and PRECONSCRHSP70A, and a circadian-regulated element, CIACADIANLELHC, also exist in most of the rice OsHAK gene promoters. Fromm and Spanswick (1993), in their study on Willow (Salix viminalis), concluded that propagation of action potentials identified were a result of voltage- and time-dependent activities of K^+ , Ca^{2+} , and Cl⁻ channels. Later, similar phenomenon was observed for irregular-shaped slow-wave potentials also, and these were induced by light/dark transitions (Herde et al. 1998; Stankovic and Davies 1997; Wagner et al. 1998). In this agreement, Deeken et al. (2000) also reported that potassium channel transcription in Arabidopsis is triggered by a local lightderived signal. In the legume Samanea saman, several Shakers and one KCO-2P were shown to display light and

SH-KT (Shanyou, KT), ZH-CK (Zhenshan 97, control), ZH-NAA (Zhenshan 97, NAA), ZH-GA₃ (Zhenshan 97, GA₃) and ZH-KT (Zhenshan 97, KT). RT-PCR was performed with the following cycling profile: 94° C for 3 min, followed by 35 cycles for *OsHAK7* and *OsHAK8*, and 38 cycles for *OsHAK16*, *OsHAK17*, and *OsHAK21* at 94° C for 1 min, 57°C for 1 min, and 72°C for 1 min. Rice *actin* cDNA was used as an internal control

circadian control in motor cells, with large changes in transcript accumulation levels (Moshelion et al. 2002). The existence of these *cis*-elements in rice *OsHAK* genes and their likely roles in regulating gene expression suggest that *OsHAK* genes may participate in various stress responses in rice.

We also compared the cluster dendrograms obtained by average signal values from microarray in 27 rice tissues and using cis-elements (data not shown) of 27 OsHAK genes. No correlation was found between the *cis*-elements and the actual expression of genes. These deviations may arise for several reasons. First, transcription factors regulate genes by binding to cis-elements, and this control of gene expression depends upon factors such as tempo-spatial expression, modification, and activation by ligand binding, among others (Banerjee and Zhang 2002). Second, although we identified a large number of *cis*-elements using PLACE, there are still many cis-elements unidentified and missed (Higo et al. 1999). Finally, polymorphisms in cis-elements can result in a range of phenotypes, depending on the amount of activity that the affected motif contributes to the function of its element (Brown et al. 2007).

Preferential expression of OsHAK genes in stamen

Expression of genes in stamen, the male reproductive organ in plants, likely has vital functions for processes leading to reproduction. Pollen swelling and anther dehiscence are the two most important processes leading to pollination and fertilization. In barley, the swelling of pollen occurs in a fraction of a second, and the presence of K⁺ in the aperture area is responsible for rapid hydration of pollen (Rehman et al. 2004). The role of K⁺ as an osmotic regulator in plants is well known (Fischer 1971; Heslop-Harrison and Heslop-Harrison 1996). K⁺ is responsible for the turgidity or flaccidity of guard cells by regulating the entry or exit of water (Moore et al. 1995). Previous expression studies conducted in stamen identified genes involved in osmo-regulation that is consistent with features of stamen and/or pollen development, such as water movement associated with desiccation and dehiscence (Scott et al. 2004). The main characteristic of KT/HAK/KUP transporters is suggested to be K⁺-H⁺ symporters (Rodriguez-Navarro 2000). The proposed function for tonoplast KT/HAK/KUP transporter is to carry out active K⁺ efflux from the vacuole to cytoplasm under K⁺-limiting conditions (Walker et al. 1996), and these transporters were suggested to be involved in low-affinity K⁺ uptake (Rodriguez-Navarro and Rubio 2006), while OsHAK10 is proposed to be a tonoplast transporter, possibly mediating low-affinity K⁺ transport (Banuelos et al. 2002). Preferential expression of OsHAK10 and OsHAK15 in stamen at 1 day before flowering suggests that these genes may play important role during pollination and fertilization.

Expression analysis of OsHAK genes in root

Plant acquires all the mineral elements from the soil through roots. Thus, K^+ uptake from roots remains an important focus in many studies. In 1961, Epstein et al.'s pioneering work demonstrated that the potassium transport system in plants consisted of high- and low-affinity components (Epstein et al. 1961). High-affinity components work at micromolar concentration, while low-affinity components work at millimolar concentration. In current study, the high or detectable levels of expression by most of the *OsHAK* genes (14 genes) in root suggest that these genes are active in root tissues and may be involved in K⁺ uptake or related functions.

In common ice (*Mesembryanthemum crystallinum*) plant, expression of two genes *McHAK1* and *McHAK4* were induced by salt stress, while *McHAK2* and *McHAK3* expressions were induced transiently under high salinity in roots (Su et al. 2002). Expression of *KT/HAK/KUP* genes also depends on developmental stages. For instance, in legume (*Lathyrus japonicus*), strong expression of *LjKUP* potassium transporter was observed in developing and growing root nodules (Desbrosses et al. 2004). It has been also demonstrated that the expression of the transcripts of KT/HAK/KUP family members in several plant species were upregulated under K^+ starve conditions (Santa-Maria et al. 1997; Kim et al. 1998; Wang et al. 2002; Ahn et al. 2004; Gierth et al. 2005; Qi et al. 2008).

Hormonal regulation of OsHAK genes

Plant hormones play important roles in growth and development. The commonly recognized classes of plant hormones are auxin, gibberellin, cytokinin, abscisic acid, and ethylene, among many others. Studies have shown that plant hormones regulate K⁺ transport. Our findings also indicate upregulation or downregulation of transcripts of OsHAK genes after treatments of NAA (a member of the auxin family), GA₃ (a gibberellin), and KT (a cytokinin) in all the three rice genotypes. The first molecular studies of the hormonal regulation of K⁺ transport (Van Steveninck 1976) came from findings that abscisic acid, cytokinin, and auxin strongly regulate the transcript levels of potassium channels (Philippar et al. 1999; Pilot et al. 2003). Expression of the inwardly rectifying ZMK1 potassium channel in maize (Philippar et al. 1999) was shown to be regulated by auxin. Electrophysiological studies of maize coleoptile protoplasts showed that the transcript level of ZMK1 was increased with the addition of auxin (Philippar et al. 1999; Thiel and Weise 1999). Together, these results suggest that the expression of KT/HAK/KUP family genes is regulated by hormones, indicating hormonal control of protein turnover in rice, which may be critical for several hormonedependent cellular processes.

In conclusion, the KT/HAK/KUP family is important for plant growth and development. A large number of KT/HAK/KUP family genes have been predicted in rice and Arabidopsis. Studies have been reported about the role of the KT/HAK/KUP family genes in plants. However, functions of KT/HAK/KUP family genes in rice have not been elucidated. This study provides important clues to gain insight about the functions of KT/HAK/KUP genes in rice. For example, two KT/HAK/KUP genes (OsHAK10 and OsHAK15) showed preferential expression in stamen at 1 day before flowering stage. In addition, expressions of several KT/HAK/KUP genes were differentially regulated under hormone treatments conditions. cis-Element analysis also suggested the regulation of KT/HAK/KUP genes under Ca²⁺-, light- and circadian-responsive conditions. However, future research using, for example, RNAi strategy or insertion mutagenesis is required to elucidate the precise role of individual KT/HAK/KUP gene in rice.

Acknowledgments This research was supported in part by grants from the National Basic Research Program of China (2005CB120905), the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Natural Science Foundation of China, and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO 707045).

References

- Ahn SJ, Shin R, Schachtman DP (2004) Expression of *KT/KUP* genes in *Arabidopsis* and the role of root hairs in K uptake. Plant Physiol 134:1135–1145
- Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genomewide analysis and identification of genes related to potassium transporter families in rice (*Oryza sativa* L.). Plant Sci 172:708–721
- Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436
- Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36
- Banerjee N, Zhang MQ (2002) Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol 5:313–317
- Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795
- Brown CD, Johnson DS, Sidow A (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317:1557–1560
- Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B (1997) New structure and function in plant K⁺ channels: *KCO1*, an outward rectifier with a steep Ca²⁺ dependency. EMBO J 16:2565–2575
- Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (*Vitis vinifera* L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216
- Deeken R, Sanders C, Ache P, Hedrich R (2000) Developmental and light-dependent regulation of a phloem-localised K⁺ channel of *Arabidopsis thaliana*. Plant J 23:285–290
- Desbrosses G, Kopka C, Ott T, Udvardi MK (2004) *Lotus japonicus LjKUP* is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant Microbe Interact 17:789–797
- Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the *Arabidopsis KT2/KUP2* potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131
- Epstein E, Rains DW, Elzam OE (1961) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692
- Fairley-Grenot KA, Assmann SM (1992) Whole-cell K⁺ current across the plasma membrane of guard cells from a grass: *Zea mays*. Planta 186:282–293
- Fischer RA (1971) Role of potassium in stomatal opening in the leaf of *Vicia faba*. Plant Physiol 47:555–558
- Fromm J, Spanswick R (1993) Characteristics of action potentials in Willow (*Salix viminalis* L.). J Exp Bot 44:1119–1125
- Fu H-H, Luan S (1998) AtKUP1: a dual-affinity K⁺ transporter from *Arabidopsis*. Plant Cell 10:63–74
- Garciadeblas B, Benito B, Rodriguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters *CnHAK1* and *CnHAK2* of the seagrass *Cymodocea nodosa*. Plant Mol Biol 50:623–633
- Gierth M, Maser P, Schroeder JI (2005) The potassium transporter *AtHAK5* functions in K⁺ deprivation-induced high-affinity K⁺ uptake and *AKT1* K⁺ channel contribution to K⁺ uptake kinetics in *Arabidopsis* roots. Plant Physiol 137:1105–1114
- Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99:1035–1041
- Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

- Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1998) Remote stimulation by heat induces characteristic membrane-potential responses in the veins of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153
- Heslop-Harrison Y, Heslop-Harrison JS (1996) Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Ann Bot 77:573–582
- Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant *cis*-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300
- Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of *Arabidopsis thaliana* vacuoles isolated from cell culture. Mol Cell Proteomics 6:394
- Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca²⁺ transients reveal ABRE-related sequence as Ca²⁺responsive *cis*-elements in *Arabidopsis*. Plant Cell 18:2733–2748
- Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62
- Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362
- Li W, Assmann SM (1993) Characterization of a G-protein-regulated outward K⁺ current in mesophyll cells of *Vicia faba* L. Proc Natl Acad Sci USA 90:262–266
- Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147
- Maathuis FJM, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of *Arabidopsis thaliana*. Proc Natl Acad Sci USA 91:9272–9276
- Maathuis FJM, Sanders D (1997) Regulation of K absorption in plant root cells by external K: interplay of different plasma membrane K transporters. J Exp Bot 48:451–458
- Martinez-Cordero M, Martinez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K⁺ transporter *HAK1* of pepper. Plant Mol Biol 56:413–421
- Maser P et al (2001) Phylogenetic relationships within cation transporter families of *Arabidopsis*. Plant Physiol 126:1646–1667
- Moore R, Clark WD, Stern KR (1995) Botany. Wm. C. Brown Publishers, Boston
- Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642
- Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10
- Nieves-Cordones M, Martinez-Cordero MA, Martinez V, Rubio F (2007) An NH₄⁺-sensitive component dominates high-affinity K⁺ uptake in tomato plants. Plant Sci 172:273–280
- Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the *Arabidopsis* plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405
- Pfluger R, Cassier A (1977) Influence of monovalent cations on photosynthetic CO₂-fixation. In: International Potash Institute (ed) 13th colloquium of IPI. International Potash Institute, Horgen, pp 95–100
- Philippar K et al (1999) Auxin-induced K⁺ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191
- Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato *Lhc* promoter regions necessary for circadian expression. Plant Mol Biol 38:655–662

- Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of *Arabidopsis* Shaker K⁺ channel genes involved in K⁺ uptake and distribution in the plant. Plant Mol Biol 51:773–787
- Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K⁺ transporter *AtHAK5* plays a physiological role in planta at very low K⁺ concentrations and provides a caesium uptake pathway in *Arabidopsis*. J Exp Bot 59:595–607
- Quintero FJ, Blatt MR (1997) A new family of K⁺ transporters from *Arabidopsis* that are conserved across phyla. FEBS Lett 415:206– 211
- Rehman S, Rha ES, Ashraf M, Lee KJ, Yun SJ, Kwak YG, Yoo NH, Kim JK (2004) Does barley (*Hordeun vulgare* L.) pollen swell in fractions of a second? Plant Sci 167:137–142
- Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) *TRH1* encodes a potassium transporter required for tip growth in *Arabidopsis* root hairs. Plant Cell 13:139–151
- Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30
- Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160
- Rubio F, Santa-Maria GE, Rodriguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Plant Physiol 109:34–43
- Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The *HAK1* gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289
- Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60
- Senn ME, Rubio F, Banuelos MA, Rodriguez-Navarro A (2001) Comparative functional features of plant potassium *HvHAK1* and *HvHAK2* transporters. J Biol Chem 276:44563–44569
- Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406
- Stoeckel H, Takeda K (1995) Calcium-sensitivity of the plasmalemmal delayed rectifier potassium current suggests that calcium influx in pulvinar protoplasts from *Mimosa pudica* L. can be revealed by hyperpolarization. J Membr Biol 146:201–209
- Su H, Golldack D, Zhao C, Bohnert HJ (2002) The expression of HAK-type K⁺-transporters is regulated in response to salinity

stress in *Mesembryanthemum crystallinum*. Plant Physiol 129:1482–1493

- Takahashi R, Nishio T, Ichizen N, Takano T (2007) High-affinity K⁺ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na⁺ permeability under NaCl stress. Plant Cell Rep 26:1673–1679
- Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596
- Thiel G, Weise R (1999) Auxin augments conductance of K⁺ inward rectifier in maize coleoptile protoplasts. Planta 208:38–45
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
- Van Steveninck RFM (1976) Effect of hormones and related substances on ion transport. In: Luttge U, Pitman MG (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 307–342
- Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier *TRH1* is required for auxin transport in *Arabidopsis* roots. Plant J 40:523–535
- von Gromoff ED, Schroda M, Oster U, Beck CF (2006) Identification of a plastid response element that acts as an enhancer within the *Chlamydomonas* HSP70A promoter. Nucleic Acids Res 34:4767–4779
- Wagner E, Normann J, Albrechtová JTP, Walczysko P, Bonzon M, Greppin H (1998) Electrochemical-hydraulic signalling in photoperiodic control of flowering: is 'florigen' a frequency-coded electric signal? Flower Newsl 26:62–74
- Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514
- Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (*ARF*) gene family in rice (*Oryza sativa*). Gene 394:13–24
- Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370
- Yu J et al (2005) The genomes of *Oryza sativa*: a history of duplications. PLoS Biol 3:e38
- Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409